Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Abstract MicroRNAs (miRNAs) play important roles in post-transcriptional gene regulation and phenotype development. Understanding the regulation of miRNA genes is critical to understand gene regulation. One of the challenges to study miRNA gene regulation is the lack of condition-specific annotation of miRNA transcription start sites (TSSs). Unlike protein-coding genes, miRNA TSSs can be tens of thousands of nucleotides away from the precursor miRNAs and they are hard to be detected by conventional RNA-Seq experiments. A number of studies have been attempted to computationally predict miRNA TSSs. However, high-resolution condition-specific miRNA TSS prediction remains a challenging problem. Recently, deep learning models have been successfully applied to various bioinformatics problems but have not been effectively created for condition-specific miRNA TSS prediction. Here we created a two-stream deep learning model called D-miRT for computational prediction of condition-specific miRNA TSSs ( http://hulab.ucf.edu/research/projects/DmiRT/ ). D-miRT is a natural fit for the integration of low-resolution epigenetic features (DNase-Seq and histone modification data) and high-resolution sequence features. Compared with alternative computational models on different sets of training data, D-miRT outperformed all baseline models and demonstrated high accuracy for condition-specific miRNA TSS prediction tasks. Comparing with the most recent approaches on cell-specific miRNA TSS identification using cell lines that were unseen to the model training processes, D-miRT also showed superior performance.more » « less
-
Abstract Motivation MicroRNAs (miRNAs) are small noncoding RNAs that play important roles in gene regulation and phenotype development. The identification of miRNA transcription start sites (TSSs) is critical to understand the functional roles of miRNA genes and their transcriptional regulation. Unlike protein-coding genes, miRNA TSSs are not directly detectable from conventional RNA-Seq experiments due to miRNA-specific process of biogenesis. In the past decade, large-scale genome-wide TSS-Seq and transcription activation marker profiling data have become available, based on which, many computational methods have been developed. These methods have greatly advanced genome-wide miRNA TSS annotation. Results In this study, we summarized recent computational methods and their results on miRNA TSS annotation. We collected and performed a comparative analysis of miRNA TSS annotations from 14 representative studies. We further compiled a robust set of miRNA TSSs (RSmirT) that are supported by multiple studies. Integrative genomic and epigenomic data analysis on RSmirT revealed the genomic and epigenomic features of miRNA TSSs as well as their relations to protein-coding and long non-coding genes. Contact xiaoman@mail.ucf.edu, haihu@cs.ucf.edumore » « less
An official website of the United States government
